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Abstract. In this survey we discuss ralional approximation properties of certain
hraic power s over a finite field using continued Fracticons. These algeleaic
clements are lixed points of Lhe composition of a linear fractional transformalion

and of the Vrobenios 'Il|I|Il.-'|:-:3l"']3l|'i‘-lll.

The Fields of Power Series over [

Lot K, be the field with g elements and let p be ibs characteristic. We consider

Lhe feld F (T of rational lunelions n the indeterminate T, with cocthcients
j

in Fy. On this field F, (T we consider the nltrametric absolulte value delined

by

iy rpr)el o {2 i f
|F/C) = |4 : ' aed 0] =0
where |T'] = 1 s a fixed real number, The field abtained by completion from

T for this absolute value will be denoted by Flg), IT& € Flg) and & &

wie CRIL wrile 1L a5 4 power series expaiision

G = N #T"  with

el

and the absolute value is extended by [&) = |T". This constroction is anal
oeons to the elassical constructiom of the feld of resl nmoobers rom Lhe ring
of inlegers. The resulting field F{g) has many similar propertics with B and
henee could e called the feld of formal numbers over Fo. In the

ments below we consider & < Fig) written as & — P{T) 43 0,177

P(T) is the integral {polynomial) part of @, The [irst result is an illustration

ol the similarity with real numbers,

Theorem 1.1. & & j'.': Iy 4 and ondy & the seguence (0, )20 18 wltintafs

Modic,
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Since we are concerned wilh algebraic elements in Flg) over Fgf

interesting to mention a deeper result concorning the power serics expansion,

due to Christol,

Theorem 1.2, & is aly
SCOWCTMCCS
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base Aeld K instesd of F. Then the resulting field is called the ficld of power

series over K and denoted by K{{T7")) . Indeed the finiteness of the hase

ficld is cssentinl in many results and this mwakes the Geld Flg) particnlarly
interesting. We study here, in the case K = F,, rational approximation o
alpebraic power series over N (T, For a study in a larger context and for
more referonces see l].|_.

Many classical gquestions in munber theory, which hiave been studied in
the setting of real munbers, can be transposed and studicd in fields of power
series, The starling point in the study of rational approximation to algebraie
real numboers 15 a0 tamons theorem es ished by Liowville in 1850, This

theorem has been adapted by Mahbler M in lields of power scries with an

arlsl ¢ base [ield.

heororm 1.3, Let | be a fleld, Lel & ¢ Ki{T4)) be an algebraie element

over WU |'|_|I' r."."_u_,'u'T-:' n =1, Then there 15 _.'.l.'-"u.-..".'.l': el T iicfl that

) lllI(J = |{.,'I ¥

for all P,¢) ¢ K[T],

[1n the case of real numbers, we know that Liouville's theorem was the
lirst step in the study of rational approximation fo algebraie mumbers, A
deeper result was obtained withh Tiolh's theorem established n 1955, This
st theorem can e transposed in ficlds of power servies i and only if the base
[ield has characteristic zero. In this case the expronent i i the '_'i;_';]ll hand sile

eforalle =10
with the constant ¢ depending upon e, But this is not =0 in the case of
[ield F{g) and consequently the stndy of rationsl approsimation o algebs

cloments boeomes more complex,

2  The Continued Fraction Algorithm

Aain the elassieal context of the real nunbers, we have a continued fraction

algorith in Flg). Tor a general reforence on this subject see |50 108 & Fig)
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Wi can write

1 g = 0 for & = (.
This continued [raction expansion is finite if only if & & F (T, As in
the classical theory we define recursively the two sequences of polynomials

[.l',-. _:.-._'_-|| el {1
and  pp = g1 + Ya-u,

with the initial conditions xq = ap, o wpiy + 1, 4o l and w 1. We
have Ty it — Yar10, = (=107, whenee o, and g, are coprime polynomi
als. The rational x is called o corperg to & and wao | i

[ri.|_|'l|_ i
o] = [Wn bt
We mention an important result which is an analogne of Lagrange's

orem (see [5]),

Theorem 2.1. Let & < Wg) be o Then the sequence of partiol

quatients in the condinuwed fraction expansion of & is wllimalely peviodic if

el ondy if & ds quadratic over ]1_7“, (1.

3 The Approximation Exponent

Let & & Fly) be an irrational clement. We deline Lhe approcimation ezponent

ot & by

log [ — FiQ .

O] v lag |2

[ &) = limsap(

where P and @ run over polynomials in F [T with @ # 0. Let us consider the
continued [raction expansion & = [ag,ay, ... 0., ... ] Since the converzente

arc the best ralional approscimations to &, it s clear, using (1), that the

approximation cxponent can also be defined directly by

v =2 4+ limsup{deg appq / deg ).
Observe that degyy = 3., dega; and therefore »(8) is directly con
nected Lo Lhe growth of the sequence {deg o, ) =1. I partienlar if the sequence
ldegag)i=g is bounded then »{&) = 2, Clearly we may have (8 = 2 withont
Llis assmption.
Because of Mahler's theorem, Tor all @ < Fig) algebraic over | AT and
of degroe no= 1, we have

I = _2. I.'J.
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We give now two classical examples, in some sense dual of each other, of
algebraic elements for which the approximalion exponent is maximal, The

second was [irsl introduced in '.”'-J|. Here r = p* where § = () is an intemer,
Erample 1: We define @ € F{p) hy
B [l TP s T

Becawse of the Frobenius homomorphism, we have LA+ &7, It is easy
to soe that w{@) =+ + 1.

Erammple 21 Here we assume that § =2 0 and we define @ = Fip) by

=
)
Nar
[n thal case we have @ = 1/T + @7 and v(@) = r (see M]). It is interosting
to ohserve thal the contimmed fraction for this algebraic cloment can be Ziven
explicitly.

Theorem 3.1. Assume that r = 2, We define recursively onn > 1 a finite
sequence [y of elements i F [ sweh thal
=T and 12

Ir 1, a1, 89, ..., 0m ther [}, - " g,y and —12, —ily, —l73,

cenr . Further £2. denotes the infinile sequence beginning by 12, for all

i L Then the conlinued froction srpension for & o [0 02,

We recall that no explicit continued fraction expansion is konown for a
nom-guadratic algebraic real number,

4  Algebraic Elements of Class

liet r = Jl.-r where £ = () is an integer. We denole by H':_-'.fj] the aubsct of
irrational elements in :"-l_rrll_] such that there exist A, B, O, 1 & iF”” | with

A" - B 2
cer+ D v
We put Hig) = . ;g Hir g). The clements of H{y) are ealled algebraic
elements of class 1. Observe that the elements which are guadralic and also
cubic over Iy (17) are algebraic of class T {indesd the four cloments 1,8,0¢
and @71 are linked over F.{T)).
lhese algebraic elements were introduced by Baum and Swee [BS1] when
the base [ield was Fy. Later they were considerad by Mills and Robbins [MR
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in a general context, We give below a theorem which gives the main known

rational approximation propertics of these clements.

Theorem 4.1, We have (ke following properties ;

(i) If @ c Hig) ther (&) © 2 and liminf | —see &I ST
I_:::l |"_|'.-('-;' = '.lli':n'.-'ln': fray el -:.' i7l r'-..---'n'.--:.'.' FE) e feai |.||',1_'II:_|..'..i'- )
[ E) = 2

iti) If 8 < Flg) is algebraic of I and & ¢ Hig) then v{@)

For (1) see [dM] and "l.i. for (1) see |,-'5.| ard Tor (5) see [LdM1| and
[LdM2]. Observe that the last properly inplies that the algehraic elements

which are bhest approximable by rational clements must belong to Hig) (as

that there exists a natural partivion of Lthe sew Hg) inlo two subsels K {g)
and Maigl.

Corollary 4.2, Let &
e« & c Hilg) o there is o real nember gm0 such thael

; dega; ) [4.e.
£ Ly
ik

= .'Il'::l'_ll']. Then we have &1

i supldeg ag

Ll : there is an infeger B such thal

doma, << H

The two examples given above belong Lo H (g when they are nob guadratic,

Clearly Tia(q) containg the guadratic formal munbers, The existence of non-
quadratic elements in Halg) was first observed by Banm and Sweet '[HHI:
and latter by Mills and Robbins (ME] Tt is interesting to remark that e
dent compnter caleulation shows that W (g) 15 a much larger set than Halg)
Il is alse important to observe that both snbsets Hq(q) and Ma{g) arc stable
under three translormalions @ 1) the Frobeonins homomorphism, 2] a0 line

fractional franstormation with polynomial coellicients, 3) the change of 1
ke a polynomial of 1. Moveover these three transformations preserve the

(1.

degree of an algebraic element over I, |

5 A Particular Subclass in H(qg)

[ we look lor an sanalogne of the subset H{g) in the setting of the real nom-
bers, we should consider Lhe subsel ol guadracic real munbers. Indeed these

mumhers are Hxed points of a linear [ractional transformation with integer
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cocficients. This implies the peculiar pattern of their continued fraction ex
pansions. Unluckily the possibility of describing explicitly the continned frac-
Lion expansion for all the elements of Hig) seems yet out of reach (scc _-"'-”{I:'.
Mevertheless this deseription is possible for a particular subelass.

Wi will say that an element in Hig) is of class LA Gf A0 — B e ]
equation (2. Example 1 given above helongs to this subelass, Observe Lhat,
according to the second property of Theorem 4.1, (0 & is of class [TA and v |
then & & Hy(g). Such algebraic elements have beem studied by Schmide [S

and alzo by Thalour [T] who proved independently the following theorem,

Theorem 5.1. & ¢ Fig) iz algelraic of class TA f and only of there «

k> 1, a0 € F,[T| withD<j<kandi>1,tec N andc e F such that

i
y ; ol
witiere Jor L=

af T as o,

Observe Lhal for ¢ = 1 the corresponding element s quadratic and the
|'-_'\'|1.|]|-ci|||| becomes nltimately !]J."|'i_r|-!|_i_r', The [act chat the continmed fraction
expansion ean be oblained explicitly for algebraie numbers of elass TA hinplics

the following resuld,

Corollary 5.2, Lef o be o omelionel veal number with o = 2 then there s oan

clement & in H "|'..: suete Mt i =l Ji==k

6 A Particular Subset of Ha(q)

As we noted above non-aguadratic elements in Halg) appear fo be exceplional,
The first examples were given in [B51], [B52] and [MR]. In [L2] and later in
i joint work with J-J. Bnch, [LEL] and TLR2], we have scavehed for these
lements with all partial quotients of degree one. For the theorem below, we
need to introduee a new notation. I (a0, 5 a sequence ol palynomials
inl |.",_.|J"| then, for ¢ = | and & = 0, we define the polynomial x5 as the

ratar of the finite continued fraction [0, a;,

Thoore 3 el =t witht = 0 and I 2 v be live integers, Let & e an

Theorer 6.1, Led / tht =l [0 e f i Lot

irrational element i Flg). Assume (hal @ = [Lay,ag, ... with dego, 1
paity

o i = 1. Then there enisty e € steh that

ey + mpo &
e + -, G
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if and only of there s a sequence (6 )p=o of clements én ), with eg = | and

1 we hiave

[ the trivial ease I, wo mect with a particular case of Theorem 5010

[ndeed & i then quadratic and (5) simply becomes ap . = age Y far

k= 1. In the general case the existence of a sequence (o

1 solution of

15 will depend upon the choice of e and of the Grst [ partial quotients, Tt is
remarkable that for all g, » and [ = v there is a trivial solution of {5 given by
i =T hore 2 1 and e; = | for £ 2= 0. The corresponding algebraic element is

the one given as Example 1 above with v = 1 and is thos quadeatic. We have
given ([ in [L2] for ¢ = 3 and in [LR1] [or general ) families of examples of
SECUELCES [0  sabisfying (5], As an illustration in odd characteristic, we
give Lhe following corollary [LR1|. Here, if S is a finite sequence and & 2 0 an
integer, then S denotes the emply sequence il & = 0 or else the sequence S
repeated & times. Furt! her if 57 and 55 are two finite sequences then 5 0 55

dencles Lhe sequence obtained by coneatenation.

f.'-i]l'ull.'!.]':,.-' 6.2, letg=9p" withp £ 2 and s = 1. Let o, 3 «

B3 a
cr + 3 = 2 Lel & =0 be an integer. Let & & Fig) be defined by the following

continucd froction eepansion

Then & salis

e

XU — e X9 4 (af) 0 2 X (a@) etV

Clearly the complexity of the system (8 in theorem 6.1 is prowing with
r. In the case of even characteristic, can choose v = 2. By studying the
simplest case where Lhe parlial quolients are all linear in 1", we can prove the
following corollary [LR2].

Corollary 6.3, Let g — 2% with s = 1 and
aved ¢ be given in FY . We consider the sequence (Ag)= ) defined rooursivel
=1 by

J)‘-'I:-s D v
L Avpan = AL

Let & be the drrational element in Fig) defined by the continued froction
ETTHITLELON

6 = [0, \T, AT, ...,
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Then @ satisfies the algebraic equation

o i T

We conclude by making a last observation, Let us denote by Flg) the
subsel of Hig) containing all the elements satisfving an equation of tyvpe (1Y)
as defined in Theorem 6.1, From the subsel Flg), using the three iransior-
mations mentioned at the end of section 4, we abtain o wider set of badly
approximable algebraie clements (that is to say with bounded partial quo
tients). Does this sct cover Halg)? The answer s no if g = 2. In Lhal case
Baum and Sweet have described all the power scries with partial quotients of
depres one (see [BS27), There are among them algebraie elements which are
uol of class [ {see [L1] p. 225). On the ether hand Baum and Sweet have given
the cxample of a cubic element with bounded partial quotionts {see [BS1] and
L)) The ease of characteristic 2 might be specific since then the existence
of badly approximable clements comes from arguments of differential algebrea
(see [LdM2] po &), Consequently i is nalural Lo al sk o il the characteristic is
different from 2, are there badly approximable algebraie clements which are
not ol class TP This last guestion forees us to think of an open problem in
nunber theory @ are there badly approsimable algebraie real numbers which

are not guadratic ?
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Linear Complexity and Polynomial Degree
of a Function Over a Finite Field
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Abstract. Woe compare che complexities of the polynomial reprosentation and the
periodic segquence representalion of o function over a linile Beld in che complesity
measures degree and linear complexity, We prove o sharp inequality describing the
relation between degree and linear complexity, These investigations are motivated
by resulls on some eryplographic lunctions, [n particular, as an application of the
above mentioned inequality we prove new lower bounds on the lnesr complexity of

sequenees relatod to the Diffie-Hellman mapping,

1 Introduction

O way funetions are inporlanl Leples o ervplography, For example the
discrele loparithim is an attractive candidate for the inverse of a onc way
function. Varions cryptographic protocols as the Dithe Hellman ey excchange
depend on the intractability of the discrele logarithin (see e g [10, Chap-
ler 31 Unlortunately, there exists no cxact definition for intractability of o

anures. In the present paper we consider lunelions over [inite lelds and their
representalions as polynomials and as periodic sequences and compare the
complexity measures degree and lnear complexity.

Let g be a prime power and fix an ordering 2 Ea—1} ol Lhe
elements of the fAnite Oeld T, A g-pericdic sequence (o] of elements of
can be represented by a uniguely determined polynomial I £ B [X] of

degree at most g — 1. Conversely, every polynomial f{X) & F, X| delines a

e g-periodic sequence over .'r-.l. In ather words, we have
Tygg = O for v = 0,

£9 — £ lor all £ in £, we may restrict ourselves to the case that the
degree aof FA) is at most ¢ — 1 in the sequel.
The linear complerity L, of the sequence [@,,] i the shortest posilive

inteper £osuch that there are constants v, ..., v © I, satislving




